
NASA (fontractor Report 178223

I U E REPORT NO. 86-78

I C A S E
ITERATIVE METHODS FOR ELLIPTIC FINITE ELEMENT

EQUATIONS ON GENERAL MESHES

(NASA-CR-178223) IIEhA9IVE E E I E C D S FOR
E L L L P I I C PIIiZSE E L E I E b T ECUArilCES O N GENEEiAL
EESHES E i n a l B E F o r t (E A S A) 44 F CSCL 12A

G3/64

R . A. N i c o l a i d e s

Shenaz C h o u d h u r y

C o n t r a c t No. N A S 1 - 1 8 1 0 7

N o v e m b e r 1986

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley R e s e a r c h C e n t e r , H a m p t o n , V i r g i n i a 23665

O p e r a t e d by the U n i v e r s i t i e s Space R e s e a r c h A s s o c i a t i o n

National Aeronautics and
Space Administration

langley Research Cerrtm
Hampton,Mrginia 23665

N87- 1 E 3 6 2

Unclas
4 3 3 5 b

ITERATIVE METHODS FOR ELLIPTIC FINITE ELEMENT

EQUATIONS ON GENERAL MESEES

R. A. N i c o l a i d e s and Shenaz Choudhury

D e p a r t m e n t of Mat hema t i c s

Carnegie-Mellon U n i v e r s i t y

ABSTRACT

T h i s paper s u r v e y s i t e r a t i v e methods f o r a r b i t r a r y mesh d i s c r e t i z a t i o n s

of e l l i p t i c p a r t i a l d i f f e r e n t i a l equa t ions . The methods d i s c u s s e d are

p r e c o n d i t i o n e d c o n j u g a t e g r a d i e n t s , a l g e b r a i c m u l t i g r i d , d e f l a t e d c o n j u g a t e

g r a d i e n t s , a n element-by-element t echn ique , and domain decomposi t ion.

Computat ional r e s u l t s are inc luded .

T h i s work was s u p p o r t e d by t h e A i r Force O f f i c e of S c i e n t i f i c Research under
Grant AFOSR-84-0137. I n a d d i t i o n , t h e work of t h e f i r s t a u t h o r was s u p p o r t e d
by t h e N a t i o n a l Aeronau t i c s and Space A d m i n i s t r a t i o n under NASA C o n t r a c t No.
NAS1-18107 w h i l e i n r e s i d e n c e a t t h e I n s t i t u t e f o r Computer A p p l i c a t i o n s i n
S c i e n c e and Enginee r ing (ICASE), NASA Langley Research Cen te r , Hampton, VA
23665.

i

Iterative methods for elliptic finite element
equations on general meshes

R . A . Nicolaides & Shenaz Choudhury
Department of Mathematics

Carnegie-Mellon University

1. Introduction

It is fair to say that the development of iterative solution
techniques for all kinds of discretized partial differential equations
remains a vigorous branch of numerical analysis. Perhaps the greater
part of the effort has gone into multigrid algorithms, the next most
common topic being preconditioning methods. Traditionally applied to
elliptic problems, multigrid methods have also recently been
successfully applied to solving the hyperbolic equations of gas
dynamics (see [Jaml] for a survey).

Iterative methods in general have yet to penetrate mainstream
(elliptic) finite element methodology, where direct solvers are the
rule. This situation is partly historical, but is also due to the
difficulty of using multigrid methods in situations of great
geometrical complexity such as those routinely encountered in
structural mechanics. It is not easy to automate the construction of
several increasingly coarse embedded meshes which conform to the
geometry of an arbitrary domain. Even when this is possible, problems

with smoothing or other multigrid components may remain. In spite of
these difficulties progress has been made towards a general

implementation in [Lohl]. Where three dimensional problems must be
solved, there does seem to be considerable interest in iterative
methods, even for routine structural mechanics. The storage and time

requirements of direct methods for such problems are sufficiently
large that serious consideration of competing methods is a virtual
necessity.

2

Aside from classical multigrid methods - which we will not

consider further here - what choices remain? Basically there are two:
general first o r second order recursions with some form of

preconditioner, and "algebraic multigrid". Both groups have their
origins in the classical iterative methods. In the first class a
special role is assigned to the conjugate gradient method, and in the
second the Gauss-Seidel method is employed. The purpose of this paper
is to survey some recent developments in this field. Section 2

introduces notation, conventions used in the analysis of iterative
methods, indicates criteria for selecting good methods, and defines
the conjugate gradient method on which many later results depend.
Section 4 introduces the idea of preconditioning of conjugate
gradients and defines an important class of preconditioners based on
approximate Gauss elimination. Section 3 is about "algebraic
multigrid" and its applicability to finite element problems. Section
5 introduces three newer methods. These are a "deflation" method for
improving the convergence of conjugate gradients, an "element by
element" iterative method, and some recent ideas based on classical
substructuring. which may have applications to parallel computing.
Section 6 gives a few computational results illustrating the
properties of the various methods and also contains some further
general remarks.

2. Preliminaries

The equation to be solved is

KU = f (2 - 1)

where K is an N x N (symmetric) positive definite matrix. ([Elml]
contains a survey of iterative methods for nonsymmetric problems.) In
keeping with the aims of the paper, (2.1) is assumed to come from the
finite element discretization of an elliptic equation or system. In
practice, most such problems concern the equation

1

div (A grad v) = g (2.2)

in a bounded domain of IR2 or IR3 with appropriate boundary conditions.
A denotes a positive definite second or fourth order tensor,

3

frequently piecewise constant and/or highly anisotropic. The
displacement equations of linear elasticity have the form (2 . 2) where
v now denotes the displacement vector and A denotes the elasticity
tensor. We will usually stay with the scalar case of (2 . 2) using i t
as a model for the vector case (but see Bercovier’s example in section
6 .2) . Concerning the discretization of (2 . 2) we shall once and for
all assume that the finite element space chosen uses only function
values as nodal parameters on the mesh. This is an essential
restriction for most of the more efficient methods we consider below;
efforts to circumvent i t tend to involve extra constraints. The
important point is that efficient methods are not usually designed to
deal with the general case, and can fail if applied indiscriminately.

Iterative methods (i.m.) produce a sequence of approximations
U (k) to the solution u of (2 . 1) . We define the error e (k) = u - (k)

and the residual r (k) = f - Ku(~).
residual equation

An important relation is the

A basic idea of i.m. is that if u(~) is a given approximation to
u then we can write

Although E (k) is unknown, we can use (2.3) to compute an approximation
e (k) and then define

Surprisingly crude choices of e (k) lead to convergent iterations.

example, even approximating (2.3) by
For

where a is a carefully chosen scalar and I is the identity matrix
gives a (slowly) convergent algorithm:
method, the simplest of all iterative methods was apparently first
suggested in 1910 [Ricl] and is known as the (1st order) Richardson
method. Its convergence can be improved by allowing a to vary with k.
Using (2.6) in (2 .5) we get the iteration formula

u(~) + u as k + O J . This

4

and from (2 . 3) , (2.4). and (2.7) the error equation

e (k+l) = (I - aK)e (k) .

The Jacobi method defines e (k) by

De(k) = r(k)

where D denotes the diagonal of K. For this, the error equation is

€ (k+l) = (I - D-'K)c(~). (2. l o)

In the method of steepest descents introduced by Cauchy in 1847, (2.7)
is replaced by

for which

where a

inner products of vectors.

minimizing (u,Ku)-B(u.f). the energy functional associated with (2.1).
down the gradient at the point u .

- (r(k), r(k))/(r(k) .Kr(k)), the parentheses denoting ordinary k -
ak chosen in this way has the property of

(k)

The classical Gauss-Seidel method defines e (k) as

(2.13)

where the subscripts on the right are evaluated mod N.

the vector with 1 in position k , and 0 in all other positions.
Letting k = 1.2.N in turn in (2.13) and (2.5) gives one
iteration of the Gauss-Seidel method. To generalize this to S O R . the
second term in (2.13) is multiplied by w . the relaxation factor.

and ik denotes

Each of the methods defined above is a first order i.m. This

5

refers to the fact that as in e.g. (2.12) successive errors (and
iterates) satisfy a first order difference equation. For these and
other methods i t is often possible to determine a number O<p<l such
that

(2.14)

N where C is a constant, and 1 . 1 denotes some norm on IR . Provided

(2.14) is a sharp inequality. p can serve as a performance measure for
a method; to be useful i t must be complemented by a measure of the
work needed to compute each iterate.

In the literature on i.m. i t is customary to at least evaluate p

for the test problem consisting of the standard 5 point approximation
to the Laplacian on a uniform mesh of spacing h = l/(n+l) in a square
of side 1 in the plane with Dirichlet boundary conditions. Each i.m.
has its own analysis, usually involving substantial mathematics.

Here, we shall merely list some results valid for h + 0:

1st order Richardson: p = 1 - Ch2
k same: variable a

Jacobi : p = l - Ch2
Steepest descents : p = 1 - Ch2
Gauss-Seidel : p = l - Ch2

: p = l - C h

SOR : p = l - C h .

Proof of these results may be found in the standard references [Forl],
[Varl], [Youl].

The constant C which appears is not necessarily the same for each
method, but in every case is independent of h.

P -P In general, if p = 1 - Ch then O (h) iterations are required to
compute each new decimal digit of the solution. Thus. we see that
e.g. SOR requires only about h times the number of iterations of
Gauss-Seidel for a given accuracy for the simple test problem. But
SOR is much more difficult to use because the parameter w must be
determined somehow, and the number of iterations can increase
substantially if i t deviates even slightly from its exact theoretical
value.

The preceding observation suggests that we should list some
criteria for an i.m. to be acceptable. Basic ones are the following:

6

1. High rate of convergence (i.e. small p) .

2. Performance should be essentially independent of A in (2.2).

3 . Users should not have to supply parameters or
interact with the program.

4 . A method should achieve an order of magnitude saving in storage
and computation time over Gaussian elimination.

1 is required in order that the iteration can be terminated with a
reasonable guarantee that the current approximation is a good one. I t

is very difficult to decide whether a slowly convergent iteration has
in fact "converged". Concerning 2 , the methods described above may
fail for highly anisotropic or highly inhomogeneous materials. For
example, if the square is bisected parallel to the y axis and the
material tensor A is diag(l.1) in the left side and diag(rc.rc) where
O < K < ~ on the right, then with certain boundary conditions, K appears
in the above expressions for p as p = 1 - CKh . This gives an
unacceptably poor rate of convergence if K C 1. Incidentally, related
difficulties can arise even with isotropic and homogeneous problems if

there are high mesh aspect ratios or sudden changes in the mesh
spacing. Then K measures the mesh ratios etc. Point 3 reflects the
fact that users are just that, and presumably do not want to become
experts in i.m. Point 4 is the main rationale for considering i.m. in
the first place: symmetric banded elimination for the model 2d
problem has an operation count of N 2 /2 and requires N 3 / 2 storage
locations. Other demands could be made; for example, i t could be
required that i.m. impose absolutely no more constraints on the user
than Gauss elimination, but this is not usually feasible.

B

We now generalize the previous ideas to second order i.m. The
basic formula for these is a generalization of (2.7),

(2.15)

where wk and ak are scalar parameters. and w + a i = 1. The problem

here is to choose the parameters to have a good convergence rate. A s

with the first order case, they may be chosen as constants (the second
order Richardson method, due to Frankel [Fral]). as dependent on k
(the semi-iterative method [Varl]) or by a variational approach
(conjugate gradients). We shall not consider the first two cases any

k

7

further here, because the correct choice of the parameters requires a
knowledge of the smallest and largest eigenvalues o f K - information
which is rarely available. For the details see [Hagl]. [Varl].

[Youl]. Instead, consider the third case, the conjugate gradient

method, where w o = 1 and

and

This choice for the 2 parameters of the basic formula (2.15) is

obtained by imposing the 2 orthogonality conditions

(2.16)

(2.17)

(2.18)

on the new residual r (k+l).
the conjugate gradient algorithm, but i t is mathematically equivalent
to it (see Appendix) and is, perhaps, conceptually simpler. The basic
result which follows rather surprisingly from (2.15) - (2.17) is that
r (k+l) is orthogonal to all the previous residuals. not just to the
two previous ones by construction. This can be easily proved by
induction. making essential use of the symmetry of K. Thus, after at
most N steps the residual will be zero, and the current iterate will
be u itself. In practice N is usually too large for the method to be
used in this way. What occurs frequently is that the residual
decreases sufficiently rapidly that an acceptable approximation is
produced after considerably fewer steps. In fact, for second order
homogeneous and isotropic equations, the required number of iterations
is usually closer to fi in two dimensions (% in 3d).

This is not the standard way of writing

A s with the

first order i.p. the speed of convergence may slow significantly if
the material properties deviate much from isotropy or homogeneity.

Applied to the standard test problem i t can be proved [Hagl] that
for conjugate gradients, the factor p = 1 - Ch. This implies the

O (d) iterations per digit of accuracy mentioned above. Conjugate
gradients is the easiest way to get this 1 - Ch factor without
supplying special problem dependent iteration parameters. Each of the

8

methods s o far considered either converge slower than conjugate
gradients or need such parameters. This is perhaps the main reason
for the popularity of the method. On the other hand, this is not very

fast convergence. It would be more satisfactory to have p = 1 - C&

say. giving O(N1’4) iterations per digit, or even faster rates,
provided they could be obtained at small cost.

It should be mentioned that making the constant C small is

another way to improve convergence. This seems to be much more
difficult than adjusting the exponent of h. to judge from the very
small number of methods which achieve i t . In the conjugate gradient
setting, such a situation occurs sometimes when there are relatively
few distinct eigenvalues. These distinct eigenvalues may range from,
say 0(1) to O(h-2). giving p = 1 - Ch. but if there are m of them i t

can be proved that at most m iterations will produce the exact
solution of the linear system, apart from roundoff. In general, there
are a large number of distinct eigenvalues s o that the estimate in
terms of h is more realistic, but transformations could be sought
which reduce the number of distinct eigenvalues and make this estimate
irrelevant.

Each iteration of conjugate gradients consists of forming
matrix-vector products and dot products of vectors which are O(N)
operations. Since the number of digits significant in approximating
the solution to the model differential equation is O(log,,N), the
total work count is O(N3/210g,,N). The storage is O(N) because only
the nonzeros of K are needed. This is to be compared with N 1 2 work
and N 3/2 storage for the solution of the model problem by direct
methods .

2

3. Algebraic multiFrid (amg)

This technique attempts to extend the basic ideas of regular
multigrid methods to a more general class of problems. No continuous
problem underli’es the given algebraic system of equations which is to

be solved and, in particular, no grids are involved. The outline
given here is based on [Rugl] which contains more details and
references.

9

3.1 Multigrid principles

Standard multigrid algorithms are based on the following

principles: consider the residual equation (2 . 3)

K e = r.

If K is a discrete partial differential operator, and r a
corresponding source o r load vector representing a suitably smooth
function, then E can probably be well approximated by defining a
coarser problem

A A ..
K e = r

where denotes a coarsening of the objects involved. For K the
simplest example is the discrete 5 point Laplacian operator on a
uniform mesh of side h = 1/2m in a unit side square.
denotes this approximation, then K = K(2h). F o r r numerous
approximations can be used, of which the simplest is
of the coarse (2h) mesh. If (3 . 2) can be solved, then E should
approximate E on the coarse mesh points. Then i t can be interpolated
(extended) to the fine mesh by a rectangular matrix E taking coarse
vectors to fine ones, E 2: E€, so that (2.4) gives

dgf If K - K(h)
h

A def

dgf r at points
h

h

h

This algorithm requires specifying (1) the coarse grid operator K (2)
the extension operator E and (3) a smooth residual r.

For standard finite elements there is a self evident definition
of E , coming from using the coarse grid trial (shape) functions to
interpolate'to the fine grid. To find K we substitute the coarse
trial functions into the energy functional and minimize in the usual
way. It then ''turns out that

A

T h

K = E K E (3.4)

h

S O that K can be expressed in terms of K and E. and does not have to
be chosen independently. In a very similar way. the correct choice
for r is

h

10

T A

r = E r . (3 . 5)

Thus, the components of (3 . 2) are fully defined once E is specified.
The construction of a smooth r is achieved by the application of

a few iterations of a classical iterative method to an arbitrary
starting approximation. On (i.j) meshes relaxation methods, such as
Gauss-Seidel in its point or line versions, are frequently successful.

In practice, (3 . 2) is itself reduced by smoothing and coarsening,
and s o on recursively until an easily solved coarse equation, usually
containing just a handful of unknowns, is reached. This recursion is
rather irrelevant to the main mathematical properties of multigrid
methods. Its significance is practical: without i t , (3 . 2) cannot be
efficiently solved.

The finite element algorithm just described was first defined and
its ("W-cycle") convergence analyzed in [Nicl], [Nic2] following
earlier finite difference work. Many improvements and additions to
this analysis have since been made. [Hacl] is a recent reference on
the theoretical aspects of multigrid methods for elliptic problems.
Here, we wish to write out the error formula for the two grid method
in order to motivate some of the amg concepts below. Substituting
(3 . 2) into (3 . 3) and subtracting both sides from the exact solution u
gives

^-1 T (old) - EK E K) E

The key observation is that if

T h

for some q then since K = E K E ,

i.e.. we will have the exact solution on completing the coarse grid
operation. This conclusion is independent of any particular choice of
E. Of course, there is no reason in general to suppose that (3 . 7)

will hold, but we can try to relate the smoothing to the choice of
coarse grid so that i t is nearly true. Then we can expect to get a
rapidly convergent method. amg attempts explicitly to achieve this
correspondence.

11

3.2 amg components

In standard multigrid, the coarse meshes are assumed given and a
smoothing algorithm must be found which enables smoothed residuals and
errors to be adequately represented on these meshes. In the amg
context where no meshes exist, the reverse idea is adopted: the
smoothing algorithm is chosen first, and based on what i t achieves -
strongly dependent on the properties of K - the coarse operators are
constructed. This is done by using the method of section 3.1. i.e..
by choosing a coarse to fine extension operator E and defining the
other operations in terms of i t as in (3 . 4) - (3.5). This must be
done recursively for several coarsenings.

In practice, this idea is not easy to implement, and attention
has s o far been restricted to symmetric positive definite matrices K
satisfying the additional conditions

N
kij - < o i # j, C kij 1 0 i.j = 1.2.N. (3.9)

j=1

Numerical results show that the method continues to converge when
these conditions are slightly violated.

Only the Gauss-Seidel method is used as an amg smoother in
[Rugl]. Relaxation at a single point is given by

u = -(l/kii)(C(l)k..u + C(2)kijuj - fi) (3.10)
j#i i j#i 1 J j

where C(l) denotes summation over points already updated in this pass
and C (2) over those not yet modified. Smoothing occurs for strongly
connected subsets of the unknowns, where the strength is measured by

the relative 'hagni tude of the of f-diagonals Iki I .
!

Next. note that for the errors ei, (3.10) gives

E = -(l/kii)(C(')kijej + X(2)kijej).
j#i j#i i

(3.11)

(3.11) can be further simplified by ignoring the notational
distinction between C (l) and C(2), and by setting to zero the terms

12

with only weak (i.e.

denote the set of strong connections o f point i . Then

lkijl is relatively small) connections. Let Si

E -(l/kii) C kijEj.
j€Si
j#i

i (3.12)

Let C denote the se of points designated as coar e. and F th
remainder. Interpolation to an F point is by linear combinations of
values at C points.

interpolation to point i € F. (3.12) now becomes

Let Si(E) g SinC denote the set to be used for

C k. . E .)
1 3 J

E -(l/kii)(C kijej +
jeSi (E) jSSi (E) i

j#i

(3.13)

(3.13) is a good approximation to the actual smoothing formula we are
using. Recalling (3.7) we want to use (3.13) as the interpolation
formula too. But the points in the second sum are not interpolation
points for i E F. Clearly, we must choose C s o that they can be
expressed in terms of Si(E)U{i} values. Several ideas have been

proposed. Good results [Rugl] have been obtained by choosing C s o

that points in the second sum in (3.13) are strongly connected to the
set Si(E).

made :

F o r these points the following approximations are now

E (kjiei + C kjeee)/(kji + c kje). (3.14)
j lESi (E) tESi (E)

for i E F, i j'j Substituting (3.14) into (3.13) gives ei C V
jESi (E)

where

(3.15)

and

13

c = c kitkt j/(kti + c
ij t4Si(E) mESi(E)

(3.16)

t# i

For i E C the interpolated value is just the coarse value existing at
i. This defines E. and the rest of the problem setup follows
automatically, as in section 3.1.

It remains to give explicit rules for the construction of C and
F. It is very important that C contains a relatively small number o f

points, because IC1 is the size of the coarse problem. A low rate o f

coarsening would produce a large number of successively coarser
levels, causing problems with storage as well as efficiency. Finding
suitable sets C is thus crucial to the operation of the algorithm.
The algorithm given in [Rugl] for finding C is. interestingly,
considerably more complicated than the amg algorithm itself, involving
much graph theoretical manipulation and empirical testing. We will
not describe i t here. Full details including flow charts and rules
for picking parameters are in [Rugl].

3 . 3 Applications

Some figures from [Rugl] give an idea of the behavior of the amg
algorithm described above. Several examples are reported including

severely anisotropic and nonhomogeneous scalar second order elliptic
problems. The meshes were structured although of course this fact was
not explicitly used. The performance is uniformly good on all the
test problems, once the setup phase is complete. The latter appears
to cost about 1 - 2 times as much as the solution itself, so that
presumably a number of solutions would have to be done to neutralize
this cost. Convergence factors are quite remarkable, being well below
0.1 for the Poisson equation on an h = 1/64 mesh, giving an
expectation o f at least one new correct digit each iteration, and less
than 0.12 for ‘all the test problems. For the work to actually solve a
model problem with a given precision, see section 6 . 4 .

4 . Preconditioning and preconditioners

In this section, we will survey a class of techniques for

14

improving the convergence of i.m. Although these techniques can be

used quite generally, we will consider only their application to
conjugate gradients (cg). It has long been known that cg works best
for matrices which have small condition numbers h

of iterations required per digit of accuracy being proportional to the
square root of the condition number. Convergence is also improved if

there are many nearly identical eigenvalues. "Preconditioning" refers
to the general strategy of transforming K to reduce its condition
number or cluster or otherwise redistribute its eigenvalues.

, the number max"m i n

4.1 Using preconditioners

Suppose we have constructed a representation of K in the form

T K = L L + R

where L is lower triangular and R can be interpreted as the error of
the approximate factorization of K 2 LLT E M. Then we can solve

instead of (2.1) with the expectation of a smaller condition number or
of better clustered eigenvalues for M-lK than for K. A minor point is

that M-lK is not symmetric, s o that cg may not converge for (4.2) as
i t stands. But using the definition of M i t can be transformed into

where the coefficient matrix is symmetric positive definite. This
appears slightly inconvenient in that i t does not refer to the
original variable u. but i t is easy to express the iteration in terms
of approximati,ons u (k) convergent directly to u.
for (4.3)

Indeed. (2.15) gives

where s (~) denotes the residual of (4.3).

15

and w is defined by the recursion formula corresponding to (2.17).

Defining u (~) = L-T~(k), (4.4) gives
k

while (4.3) gives

s o that (4.6) can be expressed as

Similarly, by (4.7)

and w continues to be given by the formula (2.17). k

1 ak ,(k> ,M-lr(k) - 1 - - I - - -
Wk W k-1 ak-l (r ik-l),M-lr(k-!) 1 - (4.10)

To summarize, (4 . 8) - (4.10) are the formulas for preconditioned cg
with preconditioner M. It is clear that the only extra work consists
of forming M-lr(k) at each iteration.

This formulation shows that any convenient M can be used as
T preconditioner and that knowing its factored form (LL) is

theoretically superfluous. Some very simple preconditioners can
exploit this.’,for example diagonal preconditioning in which the
preconditioner is D. the diagonal of K. More complicated choices of
M, required for faster convergence, should also be cheap to form,
store and invert. This motivates the definition of M as the product
of incomplete factors in the next subsection. These factors preserve

the sparsity pattern of K. so that only O (N) operations are needed for
the forward and back substitutions to compute M-lr(k).

themselves are computed, once and for all, in O (N) operations, and

The factors

1 6

require only O(N) storage.

4.2 Incomplete factorizations

The most important class of preconditioners is based on an idea

known as incomplete factorization. This idea was first suggested by
Varga [Var2]. although a Russian paper [Bull] the same year -
according to some remarks in [Stol] - contains the algorithm of [Dupl]
which itself contains a detailed implementation of Varga’s idea.
These authors consider the application of preconditioning to first
order i.m. for 5 or 9 point difference formulas in rectangles. The
application to cg was suggested much later by Meijerink and Van der
Vorst [Meil], who also give other extensions.

We will quickly review the standard matrix formulation of
Gaussian elimination without pivoting.
matrix with pivot row i. and columns 1.2,i-1 already
eliminated.

Let K(i) be the ith stage

Then with K (l) = K,

(4.11)

where L (i) is unit lower triangular, having mu1 tipliers

.N (4.12)

in column i , and zeros in the other off diagonal positions. Then

where U is upper triangular. It follows by a simple direct
calculation that

K = LU (4.14)

where L is unit lower triangular with the negatives of (4.12) in the
same places below the diagonal.

K (l) = K.
Instead of (4.11). consider the more general recursion with

1 7

where e (i) eliminates column i from IC(~), and R(i), called the local
error matrix, is any N x N matrix not introducing f i l l and such that

the (i+l)th step is well defined. Denoting by I7 the product

& (j l e (j - 1) . . .
that

j , k
and by ITk’’ its inverse, i t follows from (4.15)

where K (N) is upper triangular.
du = IC(~), (4.16) gives

Hence, defining e = TI 1 ,N-1 and

K = ~ ~ + T I lllR(l) + T11*2R(2) + . . . + E l,N-lR(N-l) (4.17)

= e b u + ~ (4.18)

where R denotes the combination of the local error matrices. (4.18)
shows that edu is the Gaussian decomposition of K - R.
well chosen, then e% can approximate LU of (4.14) and be used as a
preconditioner.

If the R(i) are

A significant specialization of (4.17) occurs when R (i) is zero
in and above its ith row.
result only below the pivot row. In this case, (4.17) becomes

s o that R (i) modifies the exact elimination

K = E % + R + R (2) + . . . + R (N-1) (4.19)

because

and the successive inverse elimination matrices use only pivot rows 1
through i of R(i).
matrices.

Thus R is just the sum of the local error

There are two more or less standard ways to choose R, both
controlling the f i l l in e and 3.
simply defined to contain the fill from the ith step of the
elimination. This is the method of [Meil]. It follows that wherever
K has nonzero entries, R has zero entries and thus, since

In the first approach, R(i) is

e (l u = ~ - ~ (4.21)

18

K and L?% agree on the nonzeros of K. In the second approach [Dupl],
[Dup2] a modification is made to the R just defined, consisting of
adding to the diagonal of R (i) at each stage the negative of its row
sums, s o that the resulting matrix has zero row sums. Thus, we keep
agreement of the off diagonal nonzero terms of K with those of the
approximate factorization, while giving up agreement of the diagonal
terms in favor of having the row sums of K and equal. The second
approach is usually considerably better than the first in terms of
convergence of preconditioned cg (pcg).

In both of these methods. the zero patterns of e and 9 match
those of the lower and upper triangular parts of K. This suggests
seeking e and 91 directly in this form, by multiplying them together
and equating to K. The extra nonzero terms (analogous to fill)
arising in this product are put into R. In a similar way, a Cholesky
type decomposition can be obtained. This approach is usual in the
finite difference literature and is especially helpful when there is
an (i.j) mesh available. However. i t is possible to show that the
different approaches lead t o the same approximate factors.

The above approximate factorizations are called incomplete
factorizations. and abbreviated as "ILU" (for incomplete LU) or "IC"
(incomplete Cholesky). If the zero row sum feature is incorporated,
the methods are usually called the modified incomplete LU (MILU) or
Cholesky factorizations (MIC).

4.3 Theoretical results

There are two groups of results available for ILU methods. The
first concerns the existence and stability of the approximate
factorizations, and the second gives estimates for the condition
numbers of the preconditioned matrices, from which the rate of
convergence of 'pcg can be found. In this section we will state
representative theorems of this kind.

It follows from (4.21) that e% is the decomposition of K - R. In
the ILU setting, if K is positive.definite then R will be symmetric
with 0 diagonal and s o indefinite. If K also has nonpositive off
diagonal entries, then in the MILU case R will have a positive
diagonal, negative off diagonal entries and zero row sums. Hence. it
is positive semidefinite. In both cases therefore. i t follows that

19

the matrix actually factored is less positive definite than K. It is

conceivable - and can actually happen for merely positive definite
matrices - that the construction of l! and % can break down. On the
other hand, i f K - R is positive definite not only does the
factorization exist. i t is also stable.

In [Meil] existence and relative stability are proved for
M-matrices, i.e.. matrices K such that kij 2 0 for i # j and K

F o r such matrices, i t is known that Gauss factorization is well

defined.

-1 2 0 .

Theorem 1 [Meil]

Let K be an M-matrix. Then the ILU factorization algorithm is
well defined for K. Moreover the factorization is relatively stable
in the sense that the ILU pivots are at least as large in magnitude as
those of the exact LU process, and I.&?! 2 ILI elementwise where L is
the exact lower triangular factor of K.

For MILU we have another theorem.

Theorem 2

Let K satisfy the conditions

> o i.j = 1.2, . . . , N (4.22) i # j, kii kij < 0

and

(4 .23)

Then for MILU. K - R is positive definite.

Condition (4.23) can be replaced with the weaker 1 condition with at
least one strict inequality, provided each row of K contains a nonzero
element after the diagonal [Axel]. A class of matrices satisfying
this and also the conditions of Theorem 1 is given by linear finite
element discretizations of the scalar problem (2 .2) with Dirichlet
boundary conditions provided all of the triangles are acute. Other
than this, there does not seem to be any large class of symmetric
finite element problems satisfying the conditions of either theorem.

20

But in practice both methods have been successful in cases where these

conditions are not too strongly violated. Also, convection-diffusion
equations discretized by upwind schemes often satisfy the conditions
of Theorem 1 [Mei2].

The condition number of the preconditioned matrix M-lK can be
computed for model problems. Chandra proved the following result.

Theorem 3 [Cha2]
For the Laplacian operator - A with Dirichlet boundary conditions

in a unit side square in I R 2 . discretized by linear elements on a
standard triangulation of side h. and preconditioned by ILU there
exist constants C, and C 2 such that

Clh-2 < cond(M-lK) < C2h-2. (4 .24)

From (4 .24) i t follows that ILU pcg does not have an improved
rate of convergence over regular cg in terms of powers of h.
Nevertheless, i t is observed in applications that ILU pcg does give a
more efficient algorithm than cg alone in the sense that a smaller
number of iterations and a smaller amount of work are needed to solve
with given accuracy. But as h decreases, the required number of
iterations to compute a new digit increases as h . If we have a
method where this figure increases like some smaller power of h. then
as h reduces, at some point the second method will become cheaper.
Where this point actually occurs is practically unpredictable and has
to be found experimentally. For the model problem of Theorem 3 i t is
proved (for finite differences) in [Gusl] that a slight variation of
MILU has cond(M-lK) = O(h-') giving O(h -1'2) iterations per digit,
potentially a large saving over ILU. The variation consists of adding
a quantity of O(h) to the diagonal during the factorization. We will
call this MILU+ for brevity. In practice, the same performance is
seen for MILU.

-1

2

Theorem 4 [Gusl]

For the problem in Theorem 3 . for MILU+. constants Dl. D2 exist
such that

D,h-' I cond(M-lK) < D,h-'. (4.25)

In the case of an arbitrary mesh and for other generalizations

21

the O(h-') condition number can be obtained, although once again only

by introducing one or more problem dependent parameters. [Axel]
contains an extensive account of these developments.

4 . 4 Further developments

This subsection gives several refinements and extensions of the

basic algorithms. First, we will consider procedures which increase
the density of nonzero elements in t? and % . [MeiB] contains a
suggestion for doing this with finite differences. The ILU procedure,
suitable for (i,j) difference schemes, is to define a prior set P of
entries in e where nonzeros are permitted to occur at least including
the nonzero positions of K. In all other positions,

definition. bu has the transposed nonzero positions. Then we generate
the permitted entries in and 3 by

= 0 by 'i j

i-1
Tii = kii - E tikqki

k = 1
j-1

eij = (l/%..)(kij - C eikqkj)
k= 1 J J

(4.26)

i-1

These are the usual recurrences, but with the entries not in P
omitted. For mesh calculations with e.g. 5 point formulas, a
convenient choice for P consists of K ' s nonzero bands together with
some nearby ones [Mei2].

Clearly, this technique is not very useful for general meshes. A
more suitable method given by [Gus21 is to recursively define e (s)q(s)

original approximate factorization. In general, as s increases P (SI

by defining P to be the nonzero set associated with the product

l(s-l)%(s-l). , ,P(') is defined to be P . s o s = 0 corresponds to the

contains more and more nonzero positions, and eventually all of them.
S O that an exact factoring would be required. [Gus21 reports that
small values of s give the best overall results.

Another problem which arises in solving general positive definite
systems is that of negative pivots in ILU and MILU. Conjugate
gradients is proved to converge only for symmetric positive definite

22

matrices. If % doesn't have a positive diagonal a problem may arise.
Two papers [Kerl]. [Manl] deal with the avoidance of these negative or
small pivots. In [Kerl] the proposed remedy is to add a sufficiently
large number to the diagonal culprit in % . This just corresponds to a
further addition into the R (i) for this step.
advanced is that if not too many of these corrections have to be made,
their effect on the rate of convergence of pcg will be small. Perhaps
because of its ad hoc nature no rigorous estimate of the effect of
this modification seems to be known. In [Manl] the prior addition of
a matrix a1 to K is advocated. However, [MeiB] points out that this
is a global change being made to correct what can be conceived as a
local problem. Moreover, a problem dependent parameter has once again
crept in. In spite of these objections, some good results have been
reported in both of the above references.

The argument usually

5. Other methods

In this section, we will very briefly mention three methods which
have been recently proposed. Much less is known about them than the
methods considered above but all have some new feature which may be of
interest. They are "deflated cg". the "element by element method".
and "domain decomposition". In each case we can do little more than
describe the algorithm and mention whatever else seems relevant.

5.1 Deflated ce;

This method, described more fully in [Nic3]. gives another way to
improve the convergence of cg or pcg. It is closer in spirit to
multigrid methods than to incomplete factorizations, but is suitable
for general meshes.

Recalling '(2.15) we can generalize i t to

where E is N x m (m < N) and has a meaning similar to the E in section
3.
constituents of the residual, particularly those for which the regular

The idea behind (5.1) is that Ec (k) "deflates" certain

23

algorithm is ineffective. c (k) is chosen to minimize

(K(r(k) - Ec(~)), r(k) - Ec(~))

1 ead ing to

which must be solved for c (k) at each iteration.
feasible. From (5.1) and (5.2) we find

Since m C N this is

(5 . 3)
-1 T (k) (k) + utr(k-l) - a o K(I - EK E K)r = wkr k k k

r (k+l)

T -1 T where K E KE (c.f. (3.4)). Let P = EK E K. In (5.3) K(I - P) is
positive semidefinite since i t is symmetric and equals

where the bracketed matrix is an orthogonal projection matrix, and
K1’2 is positive definite.
from (5.3) that

If E r (O) = 0 then i t follows by induction

This shows that the residual is always orthogonal to the column space
of E and so we can try to set up a cg iteration in the subspace
null(E) , which presumably will converge faster than in the whole
space for a good choice of E. To set up the iteration, all we have to
do is pick the two coefficients in (5.3) - which are arbitrary up
until now - .to force the usual orthogonalities

T

from which i t follows as before that

To make E r (O) = 0 , pick v arbitrarily, let s = f - Kv and solve

24

T K d = E s

for d. Then define

r ('1 now
De f

has the required property.
ation is used in a very simi

preconditioned cg algorithm [Nic3].

Ed

ar way to improve a

5.2 Convergence

Success with the deflation technique is dependent on a good
choice of E. A basic strategy for problems with smooth coefficients
and not too much anisotropy is to divide the domain into m disjoint
subdomains of approximately equal areas and to associate one column of
E with each subdomain. The jth column will be zero in every position
except those corresponding to the unknowns in the jth subdomain. where
i t is equal to 1. (5 . 4) then implies that the residuals always have
zero mean in each subdomain. In the general case, the choice of E
depends on the properties of K, and will have to be made using the
ideas required to pick the corresponding operator for algebraic
multigrid.

If the maximum area of the subdomains is small, then K will be of
large order, although convergence will be rapid. If the minimum area
is too large, then K will be a small matrix, but will not much help
the convergence relative to cg. For the above "piecewise constant"
choice of E. i t is proved in [Nic3] that for second order equations of
the type (2 .2) with smooth coefficients and meshes, the error
multiplier p = 1 - Ch/d
subdomain. If there are severe anisotropies or discontinuities, their
effect will show up in C and slow the convergence. E has to be chosen
somewhat differently for these cases. For the Poisson equation with
Dirichlet conditions and a uniform mesh [Nic3] proves that choosing
d = O(h315) gives a cost of O(N6l5) flops per digit.
slight theoretical improvement over say MILU+, for which the
corresponding figure is O(N) .

where d2 is the area of the largest

This cost is a

514

The deflation algorithm has the advantage of more general
applicability than ILU type methods because i t is based on pde theory

25

rather than on Gauss elimination. I t would apply immediately t o

linear elasticity for example. On the other hand, good choices for E
are problem dependent for degenerate cases. General software for
generating E in such cases could be developed, however.

See section 6 . 3 for some numerical results.

5.3 Element by element method

This section contains a brief description of an algorithm

recently proposed by Hughes et a1 [Hugl]. Unlike the methods of the
previous sections, this one is specifically for finite element
equations because i t uses the fact that the stiffness matrix is a sum
of element stiffness matrices. In [Hugl] the steady state solution of
the ode system

Wdu/dt = KU - f
u(0) = 0

is approximated by the iteration

(5 .5)

In this section only i t is assumed that K is negative definite. W is
a positive definite matrix chosen to enhance the convergence to steady
state. e . g . W = -diag(K). and 6t is the time step. It follows from
(5 .6) after some manipulation that

-1/2VW-1/2r(k) U (k+l) = (k) - btW

where as usual, r (k) = f - Ku (k) and

-1/2 -1 V = (I - 6tW-'l2KW 1 -

Noting for finite element systems that

26

where K. are element matrices i t follows that
1

-1/2 -1 V = (I - btZ W-ll2KiW 1
i

[Hugl] suggests the approximation

Each of the inverses on the right is easy to compute, in essence
reducing to the.inversion of a matrix of order equal to that of K

It is also suggested that the approximations (5.7) and
i ‘

-1/2 -1 1

1 =jl
Vg I TI (I - 6tW-ll2KiW 1

be used alternately.

a desirable property in certain cases. For this, the algorithm
becomes

The product V3 E V1V2 is symmetric which may be

Of course, the convergence will be improved if partial assemblies are
carried out, although the cost of the inversions will increase.

improve the “search direction” W 1’2V3W-1/2 in (5 . 8) and to use an

accurate line search in the improved direction. Numerical results for
a plane strain problem are reported in [Hugl].

Some further refinements are to use the well known BFGS update to
-

The line ‘search/BFGS combination actually brings the iteration
closer to a pcg technique.

preconditioner. This is investigated in [Noul].

In fact V3 can be used as a cg

5.4 Domain decomposition / substructurinq

This section describes some work which is the subject of much

27

K1 1

T .
-Kls K2s

current attention [Bral]. [Chal]. We can give only a general
impression of the underlying ideas.

"Substructuring" refers to the technique of ordering the
variables of a finite element system in such a way that the

coefficient matrix takes the form

Kls l

Kg s

Ks-ls-l K s-1s

K22

Kls

K2 s

Ks-ls-l K s-1s

Ks-ls Kss
T

(5 . 9)

The diagonal blocks are usually square matrices, although this is not
necessary [Gunl]. Usually, the variables belonging to each diagonal
block are associated with some disjoint physical subdomains. and those
belonging to the last block column are variables associated with the
interfaces between (and disjoint from) the subdomains. Such an
ordering is frequently convenient on physical grounds, where the
subdomains may represent different parts of a physical structure.
These orderings also seem attractive for parallel processing. The
recent interest is mostly motivated by this last factor.
Specifically, the (block) last row of (5 . 9) can be simultaneously
eliminated giving a block upper triangular system with coefficient
matrix

K1 1

K22

where

- T K-l K Ks-ls s-1s-1 s - 1 s ' C = K s s - K;~K;:K~. - . . .

(5.10)

(5.11)

Back substitution with this matrix can be achieved with another

simultaneous operation once the last (vector) unknown representing the

28

interface variables is found. It is the solution of the latter
equation, say

CUB = g (5.12)

which is the bottleneck for the parallel implementation of this

method. We are confronted with a familiar situation: if s is large,
each Kii can be of small order and easy to invert.

large order and expensive to form and invert. If s is small, Kii can

be large and more difficult to invert, while C will be small, fairly
easily formed and easily inverted.

But C will be of

For parallel implementation i t is mostly the first case which is
important. However, the gains from parallelism can be lost because of
the problems of solving (5.12) for large C . To circumvent this,
several suggestions have recently been made for solving (5.12)
iteratively. It can be proved without difficulty that for the type of
problem we are considering, C is positive definite s o that cg is
naturally suggested. The residual can be simultaneously computed

The main problem is then to using (5.11) and the LiUi factors of K

speed the convergence of the cg iteration. The important new point is
that the elements of C are not explicitly given. s o that
preconditioners of the earlier sections cannot be easily used.

ii'

Some recent work has dealt with the case of the Poisson equation
on a uniform mesh in a rectangular domain divided horizontally by one
or more mesh lines into subdomains. For this case, Fourier techniques
can be used to find the eigenvalues and eigenvectors of C explicttly.
Based on this, [Dryl] proposes the choice of preconditioner M as

*a

2 where L = (l / h){-1 2 -1) with suitable boundary conditions. and
proves that M-'lC has eigenvalues independent of h.
this to

[Goll] generalizes

M = L r + 4L.

It is unclear whether these have any use for arbitrary substructures
of a given domain, but i t seems unlikely. On the other hand, both

29

generalize formally to the case of several horizontal strips.
Another preconditioner which has been suggested is, for two

subdomains,

M = K 33 - 2KT3K3i1Kl3.

[B j o l] contains a full account of the motivation for this and its use

6. Numerical examples

This section reports some numerical results for cg. ILU and MILU
pcg. deflated cg and amg. It is not intended that any method be
selected as "best" from these results. Each method has its strengths
and weaknesses which these results do not fully reveal. The idea is
just to give some feeling for what efficiency can be expected in a few

special cases. Also, only methods for which a fair amount of
published data exists, or for which the authors have personal
experience are reported.

6 . 1 cg and pcg

The first set of numerical examples are from [Cha2] and deal with
the Poisson equation for 2 and 3 dimensional problems with Dirichlet
boundary conditions. The domains are the square (0 , l) x (0 .1) (2d)
and the unit cube (3d). with h = 1/64 (2d) and h = 1/16 (3d). The
initial distribution is "random" (distribution unknown) and the
termination criterion is I I ~ (~) I I . 2 10-6~le(o)~l , .

done in single precision on a PDP10. Results are shown in Tables 1

and 2. Flop counts are approximate and setup times are not included.

Computations were all

cg ILU MILU
#i tns 180 47 27
#f l o ~ s / l O - ~ 3 . 8 1 . 5 .86

Table 1 (2d)

#i tns

cg I LU MILU
47 18 21

30

#f lops/lo-6 .95 .49 .57
Table 2 (3d)

For comparison, solution of the 2d problem by a banded Cholesky
algorithm would require about 9.3 x lo6 flops.
the given accuracy, MILU achieves the goal of an order of magnitude
speed improvement over the direct method. Relative to cg. Table 1

shows that ILU and MILU respectively require about .39 and .23 of the
computer time of the unpreconditioned algorithm. For smaller h. the
MILU preconditioned cg algorithm would probably show larger gains
relative to the ILU case.

Table 1 shows that f o r

Table 2 shows a rather worse performance for MILU than ILU.
Presumably, this can be attributed to the coarseness of the mesh.
More evidence is required on this point.

[Cha2] contains comparisons with other preconditioners which we
have not discussed, either because they are sensitive to problem
dependent parameters or depend on a special mesh structure being
available.

A more recent set of calculations was performed by [Conl]. We
will give some results from this paper. The square (0.1) x (0.1) with
h = 1/51 is used for Table 3. which reports results for the 2d Poisson
equation with Dirichlet boundary conditions. The initial
approximation was "random" with entries in [-1.13 (presumably
uniformly distributed). Iterations were terminated when
IIr (k) llm 2 10-611r(o)llm.

used.

Double precision arithmetic on an IBM 3081 was

cg I LU MILU
#i tns 109 33 23
#f lops/lo-6 2.7 1.3* -92

U -2.0 -1.97 -1 .os
Table 3

*
This particular run took 1.37 cpu secs.

In the last row of Table 3. u gives the numerically computed exponent
of h in the condition number of M-lK.
condition number of MILU over ILU is essentially the theoretical one.
namely a factor of h. On the other hand, Tables 1 and 3 show that the

The improvement in the

31

condition number is not the whole story - the performance of ILU is
too good to be explained this way. It is the clustering of the
eigenvalues of M-lK which is responsible for the good behavior of ILU.
[Cha2] and [Conl] contain direct computations of the spectrum of M-lK

which support this.
Table 3 shows that ILU and MILU need respectively about . 4 8 and

.34 of the standard cg computation time. These are a little worse
than the corresponding figures for Table 1. Presumably this is
accounted for by the different termination rules, and initial
approximations.

[Conl] contains two more difficult computations, one with a
piecewise constant material tensor and another with pure Neumann
boundary conditions. In the former case, the square with lower left
corner at (114. 1/4) and upper right corner at (314). 3/4) is given
the material constant 1000 and the remainder of the original square is

given its previous value 1. The rest of the details are as above for
the Poisson equation. The latter example also has piecewise constant
coefficients although not with wide variations, and a term (TU, which
ensures unique solvability. u is relatively small, and piecewise
constant. For this case only, h = 1/43. This example is due to
[Varl]. and is used in [Gus21 as well. Tables 4 and 5 show the
results.

ILU
#i tns 47
#f lops/lo-6 1.9

est. cond. no. 46770
Table 4

I LU
#i tns 74
#f lops/lo-6 2.2

Table 5

MILU
32
1.3
40

MILU
53

1.6

The strong effect of the eigenvalue distribution is evident from Table
4. in which the ratio of the estimated condition numbers is greater
than 10 I and yet the ratio of the number of iterations is less than

1.5. On the other hand MILU is the more efficient algorithm in both
cases. Table 5 shows that the third example is the most difficult.
Probably the Neumann condition is the major reason for this. A banded

3

32

Cholesky algorithm would require about 1.8 x l o6 flops for solving the
third problem, and Table 5 shows that MILU is nothing like the desired
order of magnitude better than this. h is rather large for this
example, and greater relative savings would be seen if i t was

decreased.
[Conl] deals specifically with preconditioning of block

tridiagonal matrices such as those arising from 5 point difference
formulas with mesh lines parallel to the coordinate axes. Over 30
preconditioners are compared for such problems, some of them quite
sophisticated. It is very interesting to note that for problem 3 only
one preconditioner was more than twice as good as MILU. f o r problem 2
none were twice as good, and for the Poisson problem none were more
than 3.3 times as good. Moreover, none of them required less storage,
most of them needing quite a bit more, as well as more complex
programming. This is in addition to the fact that for the majority of
the algorithms i t is not clear how to correctly apply them to general
mesh problems.

6.2 Bercovier's example

In this section, we shall show some results from [Berl] of a
calculation for which negative pivots are encountered in the ILU
factorization but for which formal application of pcg gives good
results. According to [Berl] the results obtained this way are "far
better" than those using either of the remedies in [Kerl] and [Manl].
The example is that of an orthotropic cantilevered beam, 10 units long
by 1 unit deep, in plane strain. The load f is applied at the free
end. Discretization is by bilinear elements on a uniform 10 x 3 mesh.
Letting 1 and 2 denote the principal directions of the orthotropic
material, and e l , E = . . e I 2 and crl. u z , ul2 the corresponding strains
and stresses,,the elasticity matrix is defined by

103 30 0

D = [3; ; O] .

Three cases are considered, in which the angle p between the x axis
and direction 1 is 0 ' . 45'. and 90'. The negative pivots occur in the
latter two cases. The results are given in Tables 6. 7 . and 8.

33

cg I LU
#i tns 133 7

1 1 r II 2 .00080 . 000 14

Table 6 (p = 0 ')

#i tns
I I r II 2

cg I LU
>300 14

- .00003

Table 7 (p = 45')

cg I LU
#i tns >300 19

II r I I 2 - .@025

Table 8 (p = 90')

Unfortunately, [Berl] does not give much more detail than that
reproduced above, s o it is difficult to draw specific conclusions.
Clearly though. further investigation is warranted.

6.3 Deflation

Relatively few computations have s o far been carried out with
deflation: here we record its performance against cg on the model
Poisson problem with Dirichlet bc. The discrete equations were solved
using n square subdomains each containing n nodes of the triangulation
for n=9.16.25,36.49,64,81, where n is the number of interior nodes
along cross-sections and N = n . For Table 9, the initial error was a
smooth function, and iterations were terminated when the rms error was
reduced below of its initial value.

2

n = 9 16 25 36 49 64 81

cg itns 25 43 67 96 130 171 216

dcg itns 17 24 29 36 41 45 52

cg time .004 .02 .06 .18 - 4 5 1 2.0
dcg time -003 .01 .03 .OS .16 .30 .56

Table 9

The last two lines show times relative to the cg time for n = 64. The

34

first two lines are well fitted by the formulas 2.7n and 6 6

respectively. The exponent in the second of these is accounted for by
the theory in [Nic3]. Thus, the number of iterations is rising much
more slowly for the deflated case, as is the overall time. The times
given include factoring times for the deflation matrix and other
overheads.

Comparison with MILU is not easy, but there seems to be a small
time advantage (220%) with deflation applied with the above choice of
E for the model problem. The E chosen above is not the optimum one
for this problem - slightly smaller subdomains are needed for that -
but the difference is small. It needs to be mentioned that deflation
requires quite a bit less work per iteration than MILU. because most
of the operations carried out at the full mesh level are additions.
Also, there is no problem with deflation "breaking down" on more
general problems. But deflation requires choosing E properly and
presently good choices are only known for a restricted range of
problems.

6.4 amg

An estimate of the work required to solve the model Poisson
problem can be inferred from [Rugl]. There, for h = 1/64 a
convergence factor p = .054 is reported, s o that to reduce an initial
error by requires

6/11ogi0.0541 2 5 iterations ("cycles").

According to [Rugl] 85 flops/mesh point/iteration are used by the amg
algorithm, giving a work count of about

1.7 x IO6 flops,

t o reduce the error below 10 -61p) 1 .
Setup costs consist of

1. Computing the interpolation weights
2. Forming the coarse grid operators
3 . Construction of the c0ars.e mesh sets C.

35

The third of these requires more work than the first two combined.
[Rugl] gives a figure of about 5 - 9 amg iterations for 1 - 3 . Total
storage is about 3 times that required for storage of the problem
itself. Thus, for the model problem at least, the setup costs are
less than twice the solution cost.

6.5 Comments

As already stated, no attempt should be made to order the methods
on the basis of these results. Nevertheless, i t is worth pointing out

where each method can be expected to do well and not s o well. First,
i t seems probable from the amg and MILU results for the model problem
that neither has any clear advantage over the other, since the factor

of about 2 in favor of MILU could easily change with the method of
accounting. Moreover, if h becomes smaller, there should be an
advantage with amg. The setup time for MILU is an order of magnitude
less than for amg and, of course, the programming is far less complex.
Similar comments apply to deflation vis-a-vis amg. both for speed and
storage for the model problem.

In more difficult examples, i t seems that amg deteriorates less
rapidly than MILU, although the latter does what can be considered a
reasonable job in most cases. Again, there may be an advantage in
convergence speed for amg when h becomes relatively small, although
the setup costs remain to be neutralized. F o r problems with more
general geometry, and for three dimensional problems MILU seems not to
have been adequately tested. F o r three dimensional problems, amg also
has not been tested so far.

Appendix

In this appendix, we summarize the properties of the classical
conjugate gradient algorithm. and obtain the second order form used in
the paper. F o r solving

KU = f

where K is symmetric positive definite and N x N. the algorithm is
this :

36

The coefficients are given by

where

The direction vectors p (k) and the residuals r (k) satisfy the
following orthogonality relations:

From (A2) i t follows that r(N) = 0 .

in certain cases, but we do not need to worry about this here. From
[Luel] we have the following bound for the "energy"

Some earlier residual can be zero

= (e(k),Ke(k)) of the kth error:

The0 r em

where p = (1 - &)/(l + &) and K = Xmin/hmax.

2 For the model Poisson problem, the eigenvalue ratio K = O(h) .

giving p = 1 - Ch as mentioned in section 2.

first in [Rutl] (see also [Con2]), eliminate p (k) from (AI) using
To obtain the second order form of the algorithm, apparently used

and

The result is

where w + o ’ - 1. o i = -7kpk-1/7k-1 and a w

for consistency with (Al). From (A 3) i t follows that

= -rk. We define p-, = 0 k k -

Since the coefficients in (A4) involve the vectors p(k), we shall
determine them afresh, directly from (A4). To do this, note that the
property (A2) implies in particular that

((k+l) .r 0)) = (r(k+l),r(k-l)) = 0 .

In conjunction with (A4) the first implies

ak = (r(k),~(k))/(r(k),Kr(k)). (A5 1

by the symmetry of K. This last term can be rewritten using (A4) with
k : = k - 1 and taking its inner product with r(k). Then

from which i t follows that

38

(A3) with (A5) - (A6) and the initial contition w o = 1 now define the

second order form of the algorithm.
It can be proved by induction that the property (A 2) is preserved

for (A3). (A5) - (A6) with oo = 1 . There remains the question of
whether the u (k) of the standard form and u (k) of the second order
form are indeed equal. In fact, all of the iterates of the two
methods are identical (for exact arithmetic). This can also be proved
by induction, although the calculations are longer than for the proof
of (A2).

References

[Axel] Axelsson. 0. and Barker, V.A.. Finite Element Solution o f
Boundary Value Problems, Academic Press, Orlando, Florida,
1984.

[Berl] Bercovier. M. and Rosenthal. A.. Using the conjugate gradient
method with preconditioning for solving FEM approximations of
elasticity problems, Engineering Computations 3. p77, 19S6.

[Bjol] Bjorstad, P.E. and Widlund, O.B., Iterative methods for the
solution of elliptic problems on regions partitioned into
substructures, Technical Report 136. Courant Institute of
Mathematical Sciences, New York University, 1984.

[Bral] Bramble, J.H.. Pasciak. J.E. and Schatz, A.H., The
construction of preconditioners for elliptic problems by
substructuring. Mathematics of Computation 47, p103. 1986.

[Bull] Buleev. N.I.. A numerical method for the solution of
two-dimensional and three-dimensional equations of diffusion,
Mat. Sb. 51. p227. 1960.

[Chal] Chan, T.F. and Resasco. D.C.. A survey of preconditioners for
domain decomposition, Research Report YALEU/DCS/RR-414.
Department of Computer Science, Yale University, New Haven,
Connec t i cut , 1985.

[Cha2] Chandra. R.. Conjugate gradient methods for partial
differential equations, PhD dissertation, Department of
Computer Science, Yale University, New Haven. Connecticut,
1978.

[Conl] Concus. P.. Golub. G.H. and Meurant, G.. Block preconditioning
for the conjugate gradient method, SIAM J. Sci. Stat. Comput.
6, p220, 1985.

39

[Con21 Concus, P.. Golub, G.H. and O’Leary, D.P., A generalized
conjugate gradient method f o r the numerical solution of
elliptic partial differential equations, in Sparse Matrix
Computations, J.R. Bunch and D.J. Rose (editors), p309,
Academic Press, New York. 1976.

[Dryl] Dryja, M.. A capacitance matrix method for Drichlet problem on
polygonal region, Numer. Math. 39. p51, 1982.

[Dupl] Dupont, T., Kendall, R.P. and Rachford, H.H.. Jr., An
approximate factorization procedure for solving self-adjoint
elliptic difference equations, SIAM J. Numer. Anal. 5, p559.
1968.

[DupB] Dupont, T.. A factorization procedure for the solution of
elliptic difference equations, SIAM J. Numer. Anal. 5. p753,
1968.

[Elml] Elman. H.C., Iterative methods for large, sparse, nonsymmetric
systems of linear equations, PhD dissertation, Department of
Computer Science, Yale University, New Haven, Connecticut,
1982.

[Forl] Forsythe. G.E. and Wasow, W.R.. Finite-Difference Methods for
Partial Differential Equations, John Wiley. New York. 3960.

[Fral] Frankel. S.P., Convergence rates of iterative treatments of
partial differential equations, Math. Tables Aids Comput 4.
p65. 1950.

[Goll] Golub. G.H. and Mayers, D., The use of pre-conditioning over
irregular regions, lecture at 6th Int. Conf. on Computing
Methods in Applied Sciences and Engineering, Versailles.
December 1983.

[Gunl] Gunzburger. M.D. and Nicolaides, R.A., On substructuring
algorithms and solution techniques for the numerical
approximation of partial differential equations, to appear in
Applied Numerical Mathematics.

[Gusl] Gustafsson. I., A class of first order factorization methods.
BIT 18. p142. 1978.

[Gus21 Gustafsson. I., Modified incomplete Cholesky methods, in
Preconditioning Methods: Analysis and Applications. D.J. Evans
(editor), p265. Gordon and Breach, New York. 1983.

[Hacl] Hackbusch. W., Multi-Grid Methods and Applications,
Springer-Verlag. Berlin, 1985.

[Hagl] Hageman, L.A. and Young, D.M.. Applied Iterative Methods,
Academic Press, New York. 1981.

[Hug11 Hughes. T.J.R.. Levit, I. and Winget. J.. Element-by-element
implicit algorithms for heat conduction, Journal of
Engineering Mechanics 109, p576, 1983.

40

[Jaml] Jameson, A., Multigrid algorithms for compressible flow
calculations, MAE Report 1743, Department of Mechanical and
Aerospace Engineering, Princeton University, Princeton, New
Jersey, 1985.

[Kerl] Kershaw. D.S., The incomplete Cholesky conjugate gradient
method for the iterative solution of systems of linear
equations, Journal of Computational Physics 26. p43, 1978.

[Lohl] Lohner. R. and Morgan, K.. An unstructured multigrid method
for elliptic problems. to appear in Int. J. Num. Meth. in
Eng.. 1987.

[Luel] Luenberger. D.G., Linear and Nonlinear Programming, 2nd
edition, Addison-Wesley. Reading, Massachusett.~. 1984.

[Manl] Manteuffel. T.A., An incomplete factorization technique for
positive definite linear systems, Mathematics of Computation
34. p473. 1980.

[Meil] Meijerink. J.A. and van der Vorst. H.A., An iterative solution
method for linear systems of which the coefficient matrix is a
symmetric M-matrix. Mathematics of Computation 31. p148. 1977.

[MeiB] Meijerink, J.A. and van der Vorst, H.A., Guidelines for the
usage of incomplete decompositions in solving sets of linear
equations as they occur in practical problems, Journal of
Computational Physics 44. p134. 1981.

[Nicl] Nicolaides. R.A.. On the t2 convergence of an algorithm for
solving finite element equations, Mathematics of Computation
31, p892. 1977.

[NicB] Nicolaides. R.A.. On some theoretical and practical aspects of
multigrid methods, Mathematics of Computation 33. p933. 1979.

[Nic3] Nicolaides. R.A.. Deflation of conjugate gradients with
applications to boundary value problems, to appear in SIAM J.
Numer. Anal.

[Noul] Nour-Omid, B . and Parlett. B.N.. Element preconditioning using
splitting techniques, SIAM J. Sci. Stat. Comput. 6, p761,
1985.

[Ricl] Richardson, L.F.. The approximate arithmetical solution by
finite differences of physical problems involving differential
equations, with an application to the stresses in a masonry
dam, .Philos. Trans. Roy. SOC. London Series A. vol. 210, p307,
and Proc. Roy. SOC. London Series A. vol. 83. p335. 1910.

[Rugl] Ruge. J. and Stuben. K.. Efficient solution of finite
difference and finite element equations by algebraic
multigrid, in Proceedings of the Multigrid Conference,
Bristol. UK, September 1983.

41

[Rutl} Rutishauser. H.. Theory of gradient methods. in Refined
Iterative Methods f o r Computation o f the Solution and the
Eigenvalues of Self-Adjoint Boundary Value Problems.
M. Engeli. Th. Ginsburg. H . Rutishauser and E. Stiefel, p24,
Birkhauser Verlag. Basel, 1959.

[Stol] Stone, H . L . , Iterative solution of implicit approximations o f
multidimensional partial differential equations, SIAM J.
Numer. Anal. 5 . p530. 1968.

[Varl] Varga. R.S., M a t r i x Iteratiue Analysis. Prentice-Hall.
Englewood Cliffs, New Jersey, 1962.

[VarZ} Varga. R.S., Factorization and normalized iterative methods,
in Boundary Value Problems in Differential Equations.
R.E. Langer (editor). p121. University of Wisconsin Press,
Madison, Wisconsin, 1960.

[Youl] Young, D.K.. Iterative Solution of Large Linear Systems,
Academic Press, New York, 1971.

. Report No. NASA CR- 178223
ICASE Report No. 86-78

. Author(s)

R. A. Nico la ides and Shenaz Choudhury

2. Government Accession No.

. Performing Org izatio Name and A dre s
I n s t i t u t e ?or eomputer k p p I i c a t i o n s i n S c i e n c e

Mail S top 132C, NASA Langley Research Cen te r
Hampton, VA 23665-5225

and Engineer ing

2. Sponsoring Agency Name and Address

20. Security Classif.(of this page) 21. No. of Pages L9. Security Classif.(of this report) 1 U n c l a s s i f i e d 43
~~ -

Unc las s i f i e d

N a t i o n a l Aeronaut ics and Space A d m i n i s t r a t i o n
Washington, D.C. 20546

22. Price
A0 3

5. Supplementary Notes

Langley Techn ica l Monitor :
J. C. South

F i n a l Report

3. Recipient's Catalog No.

5. Report Date

November 1986
6. Performing Organization Code

8. Performing Organization Report No.

86-78
10. Work Unit No.

13. Type of Report and Period Covered

C o n t r a c t o r Report
14. Sponsoring Agency Code

50 5- 9 0-2 1 -0 1

6. Abstract

T h i s paper su rveys i t e r a t i v e methods f o r a r b i t r a r y mesh d i s c r e t i z a t i o n s of
e l l i p t i c p a r t i a l d i f f e r e n t i a l e q u a t i o n s . The methods d i s c u s s e d are
p r e c o n d i t i o n e d c o n j u g a t e g r a d i e n t s , a l g e b r a i c m u l t i g r i d , d e f l a t e d c o n j u g a t e
g r a d i e n t s , an element-by-element t e c h n i q u e , and domain decomposi t ion.
Computat ional r e s u l t s are inc luded .

~ ~ ~ _ _ _ _ ~ -
7. Key 'vVords (buggested by Authors(s))

numer i ca l a n a l y s i s , i t e r a t i v e
methods, p a r t i a l d i f f e r e n t i a l e q u a t i o n s

r ~ ~~

18. Distribution Statement

64 - Numerical A n a l y s i s

U n c l a s s i f i e d - u n l i m i t e d

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA-Langley, 1987

